Skip to main content

Ceramic Capacitors

Pin Configuration

The Ceramic Capacitors has no polarity. Meaning they can be connected in any direction. They are breadboard friendly and can be easily used on a perf board also. The symbol for ceramic capacitor is just two plain lines as shown above since they do not have any polarity.
Note: There are many types of capacitors; however ceramic capacitors are the most widely used ones and this document is applicable only for the same.

Ceramic Capacitor Features

  • Capacitor Type - Ceramic 
  • Has a high range of capacitance value starting from 10pF to 3.3uF
  • Has a high range of voltage value starting from 16V to 450V
  • Can withstand a maximum of 105°C temperature

Other Types of Capacitors

Ceramic Capacitor, Box Capacitor, Variable Capacitor, Mylar capacitors.

Identifying Ceramic Capacitors

The value of a ceramic capacitance will not be directly mentioned on the capacitor. There will always be a three digit number followed by a variable; let’s learn how to identify the value using these numbers. Consider the following capacitor.
Identifying a ceramic capacitor
As you can notice, these three digits are split into two digits and the third one is the multiplier. In this case 68 is the digit and 3 is the multiplier. So 68 should be multiplied with 10^3. Simple put it is 68 followed by 3 zeros. Hence the value of this capacitor will be 68000 pF. Notice the unit should always be pF. Similarly a capacitor with 220 code means it is 22 Pico farad, since 10^0 is 0.
The voltage rating of the capacitor can be found by using the line under this code. If there is a line then the voltage value is 50/100V if there is no line then it is 500V.
The most commonly used capacitor values along with their conversion in Pico Farad, Nano Farad and microfarad is given below.
Code
Picofarad (pF)
Nanofarad (nF)
Microfarad (uF)
100
10
0.01
0.00001
150
15
0.015
0.000015
220
22
0.022
0.000022
330
33
0.033
0.000033
470
47
0.047
0.000047
331
330
0.33
0.00033
821
820
0.82
0.00082
102
1000
1.0
0.001
152
1500
1.5
0.0015
202
2000
2.0
0.002
502
5000
5.0
0.005
103
10000
10
0.01
683
68000
68
0.068
104
100000
100
0.1
154
150000
150
0.15
334
330000
330
0.33
684
680000
680
0.68
105
1000000
1000
1.0
335
3300000
3300
3.3

Capacitor parameters selection

Ever wondered about the types of ceramic capacitors available in market and how to select one for your project? ceramic capacitors can be classified based on two main parameters. One is their Capacitance(C-Farad) itself and the other is its Voltage (V-Volts) rating.
Capacitor is a passive component which can store a charge (Q). This charge (Q) will be a product of the value of capacitance (C) and the voltage (V) applied to it. The value of the capacitance and Voltage of a capacitor will be mentioned on its label.
Hence the amount of charge a capacitor can be found using the value of Voltage (V) and Capacitance (C) of the capacitor.
C = Q×V

Capacitor in series and parallel

In most of the circuits the value of the capacitance need not be exactly the same value specified in the circuit. A higher value of capacitance will generally not affect the performance of the circuit. However, the value of voltage should be the same or higher than the specified value to prevent the risk mentioned in precaution above. In that case, if you do not have the exact value you can use to capacitors in series or parallel to attain the desired value.
When two capacitors are connected in series then, the value of the capacitance(C) gets inversely added up and the rated voltage (V) is directly added up in series as shown in the picture below.
Ceramic Capacitors in series
When two capacitors are connected in parallel then, the value of the capacitance(C) gets directly added up and the rated voltage (V) is remains the same in parallel as shown in the picture below.
Ceramic Capacitors in parallel

Applications

  • Filter circuits like High/Low pass filter etc.
  • Remove noise from a circuit
  • Smoothing ripples in converters
  • Fading LED circuits
  • Resonant circuits.
  • Decoupling and by pass circuits

2D representation (Type F)

Ceramic Capacitor Dimensions
* Refer datasheet for values

Comments

Popular posts from this blog

Voltage booster from 1.5 to 12 volt

Lighting up 12 volt LED strip with 1.5 volt battery This is a simple voltage booster circuit. It can increase the voltage of a power source by changing the constant low voltage signal into a series of rapid pulses at a higher voltage. You most commonly see this kind of circuit used to power LEDs with a “dead” battery, but there are many more potential applications for a circuit like this. Any NPN transistor like BC547 1K Resistor 12 Volt LED strip Enamel coated Copper wire preferable SW32 Ferite Ring You can source Ferite ring from dead CFL Bulb Please check out below demo Background: How Does a it Work? This circuit is a self-oscillating voltage booster. It takes a steady low voltage signal and converts it into a series of high frequency pulses at a higher voltage.  Here is how a basic it works, step by step: 1. Initially the transistor is off. 2. A small amount of electricity goes through the resistor and the first coil to the

Coupling

AC Coupling : AC coupling consists of using a capacitor to filter out the DC signal component from a signal with both AC and DC components. The capacitor must be in series with the signal. AC coupling is useful because the DC component of a signal acts as a voltage offset, and removing it from the signal can increase the resolution of signal measurements. AC coupling is also known as capacitive coupling. DC Coupling:  DC coupling allows both AC and DC signals to pass through a connection. When using DC coupling, no additional capacitor is added to filter the signal. The DC-coupled configuration is usually best if the signal source has only small amounts of offset voltage, less than ±100 mV, or if the DC content of the acquired signal is important. Download Excel Simulator

MOSFET

IRF3711Z Type Designator: IRF3711Z Type of Transistor: MOSFET Type of Control Channel: N -Channel Maximum Power Dissipation (Pd): 79 W Maximum Drain-Source Voltage |Vds|: 20 V Maximum Gate-Source Voltage |Vgs|: 20 V Maximum Gate-Threshold Voltage |Vgs(th)|: 2.45 V Maximum Drain Current |Id|: 92 A Maximum Junction Temperature (Tj): 175 °C Maximum Drain-Source On-State Resistance (Rds): 0.006 Ohm Package: TO220AB Search Reference: https://alltransistors.com/mosfet/crsearch.php